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Abstract 
 
Methodology of implementation of the no-slip boundary condition in the lattice-Boltzmann method affects overall 

accuracy of the numerical solutions as well as the stability of the solution procedure. We propose a new algorithm, i.e., 
the method of using a dynamic equation for establishing no-slip boundary conditions on walls. The distribution func-
tions on the wall along each of the links across the physical boundary are assumed to be composed of equilibrium and 
non-equilibrium parts which inherit the idea of Guo’s extrapolation method (2002). In the proposed algorithm, we em-
ployed a dynamic equation to correct the velocity error occurring on the physical boundary. Numerical results show 
that the dynamic boundary model is featured with improved accuracy and simplicity. The proposed method is postu-
lated to be useful especially in the study on microfluidic mixing.   
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1. Introduction 

Lattice-Boltzmann method (LBM) has become a 
promising alternative fluid-dynamic computational 
platform aside from the traditional CFD method due 
to its simplicity for implementation and ease in han-
dling complex boundary conditions. However, in the 
development of LBM, there are still several problems 
open to further improvement. The correct implemen-
tation of the no-slip boundary condition, among oth-
ers, is one of the crucial techniques to improve, as it 
plays an important role in the overall accuracy of the 
numerical solutions as well as the stability of the solu-
tion procedure. There are various approximate meth-
ods for the treatment of no-slip boundary condition. 
Among them, the most representative methods are the 
bounce-back method [1-4], Yu’s interpolation method 
[5] and Guo’s extrapolation method [6]. The bounce-
back scheme is particularly simple and has played a 

major role in making LBM popular among CFD re-
searchers, particularly as applied to the porous-media 
flow. However, the bounce-back method produces 
results with only first-order spatial accuracy [7] 
unless a proper spatial arrangement of the boundary 
location (i.e., placing the boundary wall just halfway 
between the grid nodes) is established [3]. By apply-
ing Yu's and Guo's method, we can get more accurate 
results, but the stability of solution is not always satis-
fying, especially when applied to microfluidic flows 
that are featured with low Reynolds numbers and low 
velocity values; in LBM simulation, such parameter 
settings necessitate large value of relaxation time τ , 
which usually causes a stability problem. 

In order to enhance the accuracy and numerical 
stability of LBM, particularly for dealing with micro-
fluidic flows, we developed a new model, i.e., dy-
namic boundary model. The present study is devoted 
to the feasibility of this dynamic treatment method. 
Accuracy and stability studies have been carried out 
on 2-D Poiseuille flow, oscillating Couette flow be-
tween two parallel planes, Couette flow between two 
circular cylinders and lid-driven cavity flow. 
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2. Background 

2.1 Lattice-Boltzmann method 

The origin of LBM traces back to the idea that one 
can construct the fluid flows from a group of fictitious 
particles having identical mass and speed, but differ-
ent velocity directions. They have motions like sus-
pended pollens in a cup of water. They can move, 
change their positions, collide with each other and 
exchange their momentum. The initial model to real-
ize this idea is the lattice gas cellular automata 
(LGCA) which has been gradually developed to LBM. 
In LBM, the statistical concept, i.e., particle mass 
distribution function, f , is introduced to replace the 
real particle in LGCA; the momentum, density, veloc-
ity and pressure, etc., can be obtained from the evolu-
tion of f  [4].  

During more than two decades, LBM has been de-
veloped to several model classes adapted to different 
fluid applications. In the present study, we employed 
the D2Q9 (two-dimensional nine-velocity lattice type 
shown in Fig. 1) LBGK model [8], and applied the 
modified equilibrium distribution function which was 
proposed by He and Luo [9] for incompressible flows. 
The distribution function is determined by the follow-
ing evolution equation. 
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In the above equation, x  is the coordinate of the 
lattice node of interest, t  the time, tδ  the time step 
(in the present simulation, 1tδ = ), τ  the dimen-
sionless relaxation time, 0α = , 1, 2,…, 8, the link 
number around a nodal point in the lattice system, and 
αe  the discrete velocity vector, which for D2Q9 

lattice space is 
 

 
Fig. 1. Discrete velocity vectors of D2Q9 lattice. 

(0,0) 0
(1,0),(0,1),( 1,0),(0, 1) 1,2,3,4
(1,1),( 1,1),(1, 1),( 1, 1) 5,6,7,8

α

α
α
α

=⎧
⎪= − − =⎨
⎪ − − − − =⎩

e   (2) 

 
Further, fα  is the particle mass distribution function, 
and eqfα  the equilibrium distribution function along 
the link number α  at a node of interest given by 
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where, u  is the fluid velocity, ρ  the fluid density, 

0ρ  the reference density (constant), sc  the sound 
speed, and wα  the weighting factor; 4 /9wα =  for 

0α = , 1/ 9wα =  for 1,2,3,4α = , and 1/36wα =  
for 5,6,7,8α = . 

The fluid density and mass flux can be evaluated 
by the following formulae: 
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During one-time-step computation, Eq. (1) can be 

solved by two sub-steps, i.e., collision and streaming; 
 

(i) collision step: 
 

( ) ( ) ( ) ( )1, , , ,eqf t f t f t f tα α α ατ
⎡ ⎤= − −⎣ ⎦x x x x   (6) 

 
(ii) streaming step: 

 
( ) ( ), ,f t t t f tα α αδ δ+ + =x e x   (7) 

 
where ~ denotes the post-collision state of the distri-
bution function. It is noted that the collision step is 
local and the streaming step involves no special com-
putation. 

 
2.2 Boundary condition methods in literature 

In general, to finish the streaming step, the distribu-
tion functions at the solid nodes near the physical 
boundaries, ( , )sf tα x  (see Fig. 2), need to be speci-
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fied after the collision step. We briefly describe here 
the three typical methods that are used in evaluating 
these functional values for the purpose to compara-
tively evaluate the dynamic boundary method; 
bounce-back method [4], Yu’s interpolation method 
[5], and Guo’s extrapolation method [6].  

Bounce-back is the most popular and simplest 
scheme. If a node is included in boundary solid, the 
normal collision computation is omitted and the dis-
tribution functions are bounced back. The subsequent 
streaming step brings fα  back into the fluid domain. 
For a stationary wall, it is equivalent to setting 

1( , ) ( , )sf t f tα α=x x , where α  denotes the velocity 
direction toward the physical boundary of the fluid 
domain, and α  the opposite direction (Fig. 2). For a 
moving wall, a certain amount of momentum should 
be added to the bounced particle distribution function: 

 
1( , ) ( , ) 6 e

s w wf t f t wα α α αρ= + ⋅x x e u             (8) 
 

where wρ  is the fluid density at the wall, e
wu  the 

desired exact velocity specified on the boundary wall 
node ‘W’. 

In Yu’s interpolation scheme [5], one obtains 
1( , )f tα x  on node ‘1’ after streaming step which is 

( , )sf t tα δ−x  brought from the node ‘S’ during the 
streaming step. Yu’s scheme is constructed based on 
the principle of momentum balance to ensure the no-
slip condition ( 0w =u ) on the wall, considering the 
momentum balance in the direction of α : 

 
( , ) ( , )w wf t f tα α=x x                      (9) 

 

 
 
Fig. 2. Layout of the lattices near a curved boundary. 

A simple interpolation is then used to obtain the dis-
tribution functions on the boundary wall node 

( , )wf tα x  given as 
 

[ ]1 1( , ) ( , ) ( , ) ( , )w sf t f t f t f tα α α α= + ∆ −x x x x    (10) 
 

Here, ∆  is the fraction of an intersected link in the 
fluid region given by 
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Using ( , )wf tα x  and 1( , )f e t tα αδ+x , one obtains 

1( , )f tα x  using a linear interpolation: 
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If the boundary is driven by non-zero wall velocity, 

wu , then an extra momentum term is added to 
( , )wf tα x  in Eq. (9): 
 

( , ) ( , ) 6w w w wf t f t wα α α αρ= + ⋅x x e u          (13) 
 
For Guo’s extrapolation method [6], the distribu-

tion function at a solid node near the wall ( , )sf tα x  
is decomposed into two parts, the equilibrium part 
and the non-equilibrium one.  
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The non-equilibrium part ( , )ne
sf tα x  is approximated 

from those of the neighboring fluid nodes along 
the link α  by using 1( , ) ( , )ne ne

sf t f tα α=x x  for 
0.75∆ ≥  and 1 2( , ) ( , ) (1 ) ( , )ne ne ne

sf t f t f tα α α= ∆ + −∆x x x  
for 0.75∆ < . The equilibrium part is determined by 
a fictitious equilibrium distribution 
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where sρ  is the fluid density on the solid node ‘S’ , 
being approximated to be equal to 1ρ  ( ρ  at the 
node ‘1’ in Fig. 2), and su  the fictitious velocity on 
the solid node near the boundary, is determined by a 
linear extrapolation using 
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( )( )1 11 /s w= + ∆ − ∆u u u                  (16a) 

( )( )2 22 1 /(1 )s b= + ∆ − + ∆u u u          (16b) 

 
It is proposed to use 1s s=u u  for 0.75∆ ≥ , and use 
a linear interpolation from 1su  and 2su  for 

0.75∆ < , i.e., 1 2(1 )s s s= ∆ + − ∆u u u . The boundary-
condition enforcement is completed by the evaluation 
of the post-collision distribution function as follows: 

 
1( , ) ( , ) (1 ) ( , )eq ne

s s sf t f t f tα α ατ −= + −x x x       (16) 
 

3. Dynamic boundary model 

Similarly to Guo’s extrapolation method, in our 
new method we also decomposed the distribution 
function at a solid wall node along the links across the 
physical boundary ( , )sf tα x  into equilibrium and 
non-equilibrium parts like Eq. (14).  

The equilibrium part is approximated by Eq. (15). 
Now, in order to obtain the fictitious velocity on the 
solid nodes near the physical boundary, su , we em-
ployed a dynamic equation given by 

 

( )e os
w w

d r
dt

= −u u u   (18) 

 
where e

wu  is the desired exact velocity specified on 
the boundary wall node ‘W’ and o

wu  the calculated 
boundary-wall velocity. Eq. (18) can also be written 
in a discrete form as follows: 

 
( )o e o

s s w wr tδ= + −u u u u  (19) 
 

Here, r  is a relaxation factor, which affects the con-
vergence property of the computation.  

According to this dynamic equation, if o
wu  is lar-

ger than the desired wall velocity e
wu , the solid node 

velocity su  will be decreased, and vice versa. Then, 
the value of fictitious velocity on the solid nodes su  
can be automatically corrected every time step until 
the numerical wall velocity wu  matches the exact 
velocity e

wu . 
For code implementation, the present wall velocity 

o
wu  can be computed by using an extrapolation 

method with the given velocities at nodes ‘1’, ‘2’ and 
‘3’ (illustrated in Fig. 2). We use one of the following 
three algorithms for the extrapolation depending on 
the velocity data available on the nearby nodes: 
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In most cases, since both 3u  and 2u  are available, 
we use the quadratic extrapolation algorithm. 

The non-equilibrium part ( , )ne
sf tα x  is approxi-

mated by using a first-order extrapolation scheme 
based on the non-equilibrium distribution functions 
on the neighboring fluid nodes: 

 
1 2( , ) ( , ) (1 ) ( , )ne ne ne

sf t f t f tα α αβ β= + −x x x  (21) 
 

where β  is a parameter to be determined. 
 

4. Computational assessment 

For assessment of the proposed dynamic boundary 
model, we studied several 2-D fluid flow problems, 
including Poiseuille flow, oscillating Couette flow 
between two planar walls and rotating Couette flow 
between two circular cylinders. We applied the dy-
namic method as well as other methods to these flows, 
compared the results and checked the spatial, tempo-
ral accuracy and the numerical stability. Lid-driven 
cavity flow is also studied to test the ability of han-
dling fluid problems with geometric singularity.  

To evaluate the computational accuracy of the re-
sults, we made use of two quantities,: the wall-slip 
velocity error SU  and the rms error in the velocity 
profile rmsε . The wall-slip velocity error SU  is 
given by 

0

e
w w
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Here, wu  is the numerical velocity on the boundary 
wall which can be obtained by the quadratic extrapo-
lation (Eq. (20)). As e

wu  is initially known and fixed, 
the difference between wu  and e

wu  provides a 
measure of the accuracy of the method. The rms error 

rmsε  is calculated by 
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It reflects the root-mean-square of the difference be-
tween the normalized velocity obtained form the nu-
merical computation and that from the analytic solution. 

Implementing the no-slip boundary conditions on 
the solid walls and evaluating the performance of 
different methods is our main purpose in this study. 
We applied the proposed dynamic method to several 
flow models and compared the accuracy as well as 
the numerical stability with other three methods: 
bounce-back scheme, Yu’s interpolation method and 
Guo’s extrapolation method. 

 
4.1 2-D poiseuille flow 

The grid system for 2-D Poiseuille flow is specified 
as illustrated in Fig. 3. The boundary conditions for 
this flow are set as follows. For the left inlet, we ap-
plied a parabolic profile 

 
2

0( ) 4 ( ) /inu y U y H y H= −                  (24) 
 

which corresponds to the exact velocity profile of the 
fully-developed Poiseuille flow. Here, y  is the ver-
tical coordinate with its origin at the bottom wall, its 
discrete value on the node j  being given by 

1jy j= − + ∆ , 1 2yH N= − + ∆  the height of the 
fluid domain, yN  the grid number along y  direc-
tion, and 0U  the given maximum inlet velocity 
which was set at 0 0.01U =  in the lattice unit. Each 
of the boundary walls is located at exactly halfway 
between two grid lines, i.e., 0.5∆ = . As the outlet 
boundary condition, zero gradient was imposed on 
the main stream velocity. We applied no-slip bound-
ary condition at the top and bottom solid walls by 
using different treatment methods and the same re-
laxation time 5τ = . In applying the present method, 
we have special parameters to be determined, relaxa-
tion factor r  in (18) and coefficient β  in (21). 
These two parameters affect the convergence property 
and accuracy of the whole numerical computation. For 
2-D Poiseuille flow, we chose 0.1r =  and 0β = . 
 
 

 
Fig. 3. Lattice system for 2-D Poiseuille flow. 

Fig. 4 shows the variation of SU  with respect to 
different number of grids yN  obtained by applying 
four different boundary-treatment methods. The value 
of SU  given by the present method is seen to be 
much smaller than those by other schemes. In fact, it 
is on the order of 1510−  which can be considered as 
the computer’s machine error. So we suppose that 
there is almost no numerical wall-slip velocity error 
by applying the present method to the Poiseuille flow. 

Fig. 5 shows rmsε  obtained by applying four dif-
ferent methods. We can see that the magnitude of 

rmsε  by the present method is smaller than the others 
by several orders of magnitude. In Fig. 6, rmsε  is also 
checked with different positions of physical wall ∆  
on the lattice. The variation of rmsε  by the present 
method not only shows small error values but also 
provides much less dependence on ∆ . 

 

 
Fig. 4. Variation of wall-slip velocity error given by the dy-
namic method in comparison with other three methods in 
Poiseuille flow ( 0.5∆ = , 5τ = , 0 0.01U = , 0.1r = , 

0β = ). 

 

 
Fig. 5. Variation of rmsε  error given by the dynamic method 
in comparison with other three methods in Poiseuille flow 
( 0.5∆ = , 5τ = , 0 0.01U = , 0.1r = , 0β = ). 
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Fig. 6. Dependence of rmsε  on ∆ representing the bound-
ary wall position in Poiseuille flow ( 5τ = , 0 0.01U = , 

31yN = , 0.1r = , 0β = ). 
 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. Stability represented by rmsε  depending on τ  and 
0U  in Poiseuille flow; (a) Guo’s method, (b) Yu’s method, and 

(c) dynamic method ( 0.5∆ = , 31yN = , 0.1r = , 0β = ). 

 
 
Fig. 8. Lattice system for Couette flow between two circular 
cylinders. 

 
We evaluated the numerical stability of the present 

and other methods in terms of the rmsε -contour in the 
parameter space 0( , )Uτ  as shown in Fig. 7. In this 
figure, the gray color contours represent the level of 
error rmsε ; the dark color denotes a high numerical 
accuracy and light/white color a low accuracy includ-
ing even the numerical overflow. The present method 
shows superiority as the dark color dominates large 
range of the value of τ  and 0U . 

 
4.2 Couette flow between two circular cylinders 

In Couette flow between two circular cylinders, the 
inner circle of radius 1R  is rotating with linear ve-
locity 0 0.01U =  and the outer circle of radius 2R  
is stationary. The grid system is fixed at 95 95× . For 
such a Couette flow, we have an analytical solution 
given by 

 

0 2
2

2

( )
1
U R Ru R

R Rθ
κ
κ

⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

 (25) 

 
where ( )u Rθ  is the velocity component along the 
tangential direction, R  the radial coordinate and κ  
the ratio of inner and outer circle radius ( 1 2/R Rκ = ). 
We fixed 2 42.5R = , and adjusted κ  to control the 
geometry. 

Figs. 9 and 10 show rmsε  obtained by applying 
different boundary-treatment methods at 0.6τ =  
(Fig. 9) and 1.5τ =  (Fig. 10). The parameters r  
and β  for the dynamic method are set at 

0.0001r =  and 0β = . These results indicate that 
the advantage of the dynamic boundary model  
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Fig. 9. Comparison of rmsε  among different methods in 
Couette flow at 0.6τ =  ( Re 10= , 0.0001r = , 0β = ). 

 
 

 
Fig. 10. Comparison of rmsε  among different methods in 
Couette flow at 1.5τ =  ( Re 10= , 0.0001r = , 0β = ). 
 
appears more distinctive for large τ  values. Fig. 11 
shows the distribution of rmsε  in the parameter space 
( 0, Uτ ). Considering that the numerical results with 

rmsε  less than 0.01 are acceptable, we can see that the 
dynamic method is more robust than Yu’s and Guo’s 
method in treating the boundary conditions of Couette 
flow between two circular cylinders. 

 
4.3 Oscillating couette flow 

For an oscillating Couette flow between two paral-
lel planes, the channel geometry is set at 4 1L H= +  
(Fig. 12). The boundary wall is located halfway be-
tween two neighboring horizontal grid lines, i.e., we 
set 0.5∆ = . The bottom wall of the channel oscil-
lates with velocity 

 
0(0, ) sin( )u t U tω=  (26) 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 11. Stability represented by rmsε  depending on τ  and 
0U  in Couette flow; (a) Guo’s method, (b) Yu’s method, 

and (c) dynamic method ( 0.2κ = , 0.0001r = , 0β = ). 
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Fig. 12. Sketch of oscillating Couette flow. 

 

 
Fig. 13. Comparison of rmsε  among different methods in 
oscillating Couette flow ( 0 0.01U = , 5τ = , 1r = , 0β = ). 
 
Under such an arrangement, the flow velocity has an 
exact solution given by 

 
0 sin( )y

exau U e t yλ ω λ−= −  (27) 
 

where / 2λ ω υ=  and υ  is the kinetic viscosity 
in lattice unit. In the study, we set 0.01ω = , 

0 0.01U =  and 5τ = . For the dynamic method, we 
selected 1r =  and 0β = . The numerical results 
shown by rmsε  in Fig. 13 indicate that the present 
method is more accurate in treating this fluid problem 
too than others. 

 
4.4 Lid-driven cavity flow 

In order to check the flexibility of the present 
method in solving the standard flow problem but 
having corner singularities, we employed it to the lid-
driven cavity flow (Fig. 14). We applied Guo’s and 
present methods in implementing the no-slip bound-
ary conditions for stationary side and bottom walls 
and 0 0.01U =  for the sliding top wall. In simulation, 
the grid system is fixed at 51 51× , the parameters at 

0.5∆ = , 0.8τ =  and Re 5=  in both methods and  

 
Fig. 14. Lattice system for 2-D lid-driven cavity flow. 

 

 
Fig. 15. Comparison of u  and v  velocities along vertical 
and horizontal centerline of lid-driven cavity flow between 
Guo’s and dynamic methods ( 0 0.01U = , 0.8τ = , Re 5= , 

0.5∆ = , 0.1r = , 0β = ). 
 

0.1r =  and 0β =  in the dynamic method. Fig. 15 
shows results being in a very good agreement with 
Guo’s. In fact, it is an elaborate task to apply the pre-
sent method to the corner of lid-driven flow. Special 
consideration and care need to be given, because dif-
ferent choice of the extrapolation scheme to obtain 

o
wu  leads to a different effect, and even influences 

the solution stability. 
 

4.5 Convergence study and further discussions 

We have demonstrated that by using the dynamic 
boundary model, one can get more accurate and sta-
ble results. But the convergence is another property to 
be checked. We found that the relaxation time τ  is 
the main factor affecting the convergence property of 
the dynamic boundary model. We studied the conver-
gence property for the 2-D Poiseuille flow at 

0 0.01U =  and 0.5∆ = . For the dynamic method,  
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(a) 

 

 
(c) 

 
we checked the performance at the β  value fixed at 

0β =  but with the r  value in the range 
0.001 1r≤ ≤ . Fig. 16 displays the numerical results at 
four different τ  values. The comparison shows that 
at small value of τ , applying the dynamic boundary 
model can cause rather slow convergence and can 
reveal fluctuation at the initial transient state. How-
ever, increase of τ  brings faster convergence as well 
as higher accuracy with the dynamic boundary model. 

We have shown that applying the dynamic bound-
ary model to the implementation of no-slip boundary 
conditions in LBM is suitable and robust especially 
when τ  i s  large.  The Reynolds number , 

0Re /U L υ= , can be written as 0Re 3 /( 0.5)U L τ= −   

 
(b) 

 

 
(d) 

 

from the relation 3 0.5τ υ= + . So, to make the Rey-
nolds number small, we must set either 0U  small or 
τ  large. On the other hand in studying the fluid mix-
ing, the value of 0U  must be set as large as possible 
because the mixing phenomenon is usually governed 
by particle advection, and small 0U  would lead to 
longer CPU time. Therefore, in order to apply LBM 
to the fluid mixing especially in microfluidics, which 
is characterized by low Reynolds numbers, we must 
find a suitable scheme such as the present method that 
is robust even at high τ  values. Even so, we still 
need to investigate the effect of r  on the conver-
gence property more elaborately and hopefully find 
some way to improve the convergence property.  

 

 
Fig. 16. Convergence properties of different methods used for implementing the no-slip boundary condition in LBM for the 
Poiseuille flow at 0 0.01U = , 0.5∆ = , and 0β = ; (a) 0.6τ = , (b) 1τ = , (c) 3τ = , (d) 5τ = . 
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5. Conclusions 

In this study, we have presented a new LBM 
boundary-condition-treatment method, namely, dy-
namic boundary model. We applied the present 
method together with other existing typical methods 
to several flow problems. The comparison study 
demonstrated that the proposed dynamic boundary 
model possesses the ability to produce high accuracy. 
We also derived a conclusion that our dynamic 
boundary model is particularly suitable in simulating 
microfluidic mixing problem as it is more robust and 
accurate at low Reynolds numbers than other methods.  
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